A scale-up nanoporous membrane centrifuge for reverse osmosis desalination without fouling

April 9, 2018 — A novel design of a scale-up nanoporous membrane centrifuge (see Figure 1 (a), (b), (c), and (d)) is proposed for reverse osmosis desalination, and the proof of concept is demonstrated through large scale molecular dynamics simulations reported in this article.

Figure 1. Design and Proof of Concept of nano-porous membrane centrifuge: (a), (b), and (c) nanoscale details of water molecules and Na$^+$/Cl$^-$ ions at vicinity of graphene membrane; (d) illustration rotational configure working principle; (e) design of a macroscale porous membrane centrifuge, and (f) multiscale pore structure on the centrifuge wall.
Nanomaterial-based separation membrane technology has been hailed as the game-changer in desalination technology, however, there are two major obstacles to prevent it in real applications: (1) the scale-up challenge, i.e. how to make a macroscale desalination machine with nano-porous membrane, and (2) the fouling problem, i.e. how to prevent Na\(^+\) and Cl\(^-\) ions blocking the nanoscale size pore without consuming much energy. In this work, a team of researchers, mainly consisting of graduate and undergraduate students from the University of California-Berkeley, have constructed an ingenious design of a scaled-up desalination centrifuge (see Figure 1) that is decorated with nanoscale porous membrane. The nanoscale porous membrane patches are part of the multiscale pore structure on the centrifuge wall (see Figure 1 (e)(f)), so that it can be readily fabricated for industrial scale desalination operation.

Moreover, in this work, we have conducted a large scale molecular dynamics simulation to demonstrate the molecular mechanism of the desalination process, providing the proof of concept of the novel design. The molecular dynamics simulation has convincingly demonstrated that the centrifugal force can balance the osmosis force and provide the thrust of water filtering through nanoscale pores. Furthermore, by using treating the rotating fluid in the centrifuge as the Couette flow, the critical angular velocity of the centrifuge is derived in the first time for such class of desalination machines or centrifuge. The molecular dynamics simulation results substantiated the critical angular velocity derived from the continuum scale fluid mechanics.

More significantly, the research team has found that there is almost no fouling for the desalination centrifuge during the simulation (see Figure 2). It is found that the ion concentration does not go up when approaching to the membrane wall, instead, it goes down, because of the combination effects of the Coriolis force and salt rejection of the graphene membrane wall, which hints a great potential for such nano-porous membrane centrifuge. The report will be published in the March 2018 issue of journal TECHNOLOGY. As the PI of the project, Professor Shaofan Li of UC Berkeley, said,

“Amid climate change and water-energy sustainability issues, the proposed nano-membrane centrifuge is a ground-breaking desalination technology with a self-cleaning mechanism and a significantly enhanced energy efficiency. Our preliminary results indicate that the graphene membrane centrifuge has a great potential to scale up and becomes the model for the next generation industrial desalination devices.”

Corresponding author for this study in TECHNOLOGY is Shaofan Li, shaofanli1997@alum.northwestern.edu
About TECHNOLOGY
Fashioned as a high-impact, high-visibility, top-echelon publication, this new ground-breaking journal — TECHNOLOGY — will feature the development of cutting-edge new technologies in a broad array of emerging fields of science and engineering. The content will have an applied science and technological slant with a focus on both innovation and application to daily lives. It will cover diverse disciplines such as health and life science, energy and environment, advanced materials, technology-based manufacturing, information science and technology, and marine and transportation technologies.

About World Scientific Publishing Co.
World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research and professional communities. The company publishes about 600 books annually and about 130 journals in various fields. World Scientific collaborates with prestigious organisations like the Nobel Foundation, US National Academies Press, as well as its subsidiary, the Imperial College Press, amongst others, to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit www.worldscientific.com.